中國投資人工智能最多的機構居然是真格基金通信
拿到錢并不意味著就可立于不敗之地。按照創新擴散理論,拿到錢,其實是往死亡靠近了一大步。這是科技行業規律使然,AI企業自然也不例外。
AI能否完成人類歷史上的顛覆式創新,開啟人類新時代?60余年來人們對這個話題一直爭論不休。
2006年,Hinton教授發明了一種訓練深層網絡的新思路,隨后三篇論文炸開了深度學習算法突破口。很快,又有公司發明了用于支持深度學習算法的新型芯片,大大改善了舊芯片計算能力不足的問題。在算法和算力的支持下,互聯網存儲了20多年的大量數據終于找到了它歷史的使命:訓練機器!于是第三次人工智能熱潮被掀起了。
雖然,這一次深度學習算法將語音、圖像識別率先推向了人類實現的最佳邊界,但是目前AI算法并不完美,一是算法訓練模型只能針對特定領域,通用性差;二是這一代算法太依賴于數據。
AI推理、思考、聯想等智力功能與人類大腦相去甚遠,目前,AI的發展水平整體上只能算是處于“微智時代”。要想讓機器成精,AI還需更上幾層樓,恐怕要更待些時日。
雖然只是微智時代,但并阻擋不了“AI+”對行業的顛覆,目前應用型技術層出不窮,未來可以預見人工智能與產業應用會產生更深層次的結合。
C端到底行不行?
在目前的AI微智時代,創業公司大致可分為三個梯隊:廣義機器人、自然語言處理、計算機視覺與圖像。
根據騰訊研究院&IT桔子聯合發布的《2017年中美人工智能創投現狀與趨勢研究報告》統計數據,國內智能機器人與無人機相關技術創業最為火爆,位居于第一梯隊;語義分析、語音識別、聊天機器人等自然語言系列的技術位列第二梯隊;第三梯隊則為人臉識別、視頻/監控、自動駕駛、圖像識別等計算機視覺系列的技術;另外,情感計算這種綜合了心理學、語義、視覺、環境感知等多種技術的復雜應用技術也在慢慢成長中,這類企業正在嘗試產業的探索與創新,前景廣闊,但是目前處于熱度排行末端。
B端市場無疑是創業最合適的切入點,可以充分發揮AI的工具性,提升效率和體驗,從而跨過工業應用紅線。
雖然目前的AI技術應用多數著眼于B端市場,為企業提供服務。不過,近兩年來,市場上出現了一些定位于C端用戶的產品。
靠近C端用戶并探索流量和數據的變現模式是較為理想的發展路徑,比如,在廣告、媒體、美妝、設計等行業已經涌現了第一批消費級終端產品,并且在消費者中形成了一定的影響力。
消費級市場或許是近期人工智能應用爆發的一個重要場景。據統計,美國已經有超過50家針對于C端初創AI企業,融資規模超過8億人民幣,雖然這些公司仍然十分微小,但是星星之火可以燎原。我們可以預見,AI消費級產品遍地開花的時間為期不遠了。
行業應用最先落地的會是誰?
技術實力是AI公司的核心競爭力之一,而技術+產品+行業落地更是其勝負關鍵。新一代人工智能的繁榮,猶如一棵枝葉繁茂的大樹,滲透至各行業的藍天之中,服務于眾多領域。
報告數據顯示,醫療行業成為AI應用最為火熱的行業,其中包括了醫療影像診斷、醫學病歷分析等方向,目前弱人工智能更容易在醫學這種專業性較強但不要求通用能力的行業發揮作用;汽車行業則憑借自動駕駛相關AI技術脫穎而出位列第二,有80家AI公司業務和汽車相關,其中30家專注于自動駕駛相關技術;排在之后的AI技術行業應用方向,無可厚非包括了教育、金融、制造、安防、家居等行業。
中美兩國的根本差距何在?
近日有一篇外媒文章,給了中國人工智能高度的贊揚,它認為中國在AI大潮中具有相當優勢,跟美國幾乎不相上下,很容易彎道超車。在我們看來,這實在有些夜郎之論。真實情況如何?請看數據:
企業數量差距:報告數據顯示,截止于2017年6月31日,全球人工智能企業總數達2542家,其中美國擁有1078家,占全球人工智能企業總量的41%;中國擁有592家,占據23%,排名第二。中美兩國差距486家。
投資金額差距:根據統計數據,美國AI公司總融資金額達978億元,占據全球總融資的50.10%;中國以635億元位居第二,占據全球AI公司總融資額的33.18%。
人才團隊差距:在 AI 領域,中國的人才總儲量低于美國,美國的 AI 人才總儲備達 78700 人,中國的人才總量僅有 39200 人,人才儲備總量不及美國的 50%。目前中國人工智能的人才培養已成為一個發展的關鍵問題,人才缺失可能會對中國未來AI產業的發展產生牽制作用。
投資機構差距:AI投資機構數量上,美國超中國兩個身位,為中國三倍。中國關注AI領域的投資機構總數量約為620家,美國約為1800家。其中投資次數在兩次及以上的投資方數量,中國為203家,美國為596家。綜合來看,美國投資界對AI的關注度遠超中國。
綜合對比,美國AI走在了全球發展的最前列,代表著各大熱門領域的高精尖。根據目前的數據統計,中國人工智能水平距離美國還有不小的差距,企業數量、融資總量、團隊規模等大約只有美國的50%左右。
中美雖有差距,中國也有自己的獨特優勢,即,中國目前的人工智能創業環境。
為何中國創業環境更勝一籌?
美國AI存量市場遠超中國,但投融資速度與獲投率中國更高美國一籌,對于AI初創公司來說,中國環境更適合創業。
獲投率
中國獲投率遠超美國,呈后來居上之勢。中國AI平均獲投率為69%,美國平均獲投率為51%,中國超出美國18%。另外,從數據可以推斷,目前,中國人工智能創投市場缺少優質項目,中國市場對于AI的投資不缺資金,根本缺失的是技術和人才。
獲投速度
從一家公司成立時間算起,到每一輪獲得投資的時間間隔代表了這家公司的獲投速度。間隔時間越短,公司獲投速度越快,表示其越受投資方的青睞。美國AI公司從成立到種子/天使輪的平均時間需要14.8個月,中國則需要9.7個月,中國AI公司的早期獲投速度明顯比美國快很多。
如何走出產業核心的困境?
人工智能發展的基礎在于算法、算力和數據,三者缺一不可。中國擁有龐大的數據庫,在應用算法上也不落其后,唯獨在算力這一領域,出現了非常嚴重的缺陷。
算力的核心在芯片,而中國在芯片領域上的積貧積弱也延伸到了AI芯片上。
根據數據統計,美國芯片企業合計33家,累計融資308.18億元。中國合計13家,累計融資13.28億元,融資額僅為美國的4.3%。
在中美總融資TOP10 公司中,中國以ASIC和FPGA為主,類腦芯片其次,占據1個席位;美國光GPU就有4家之多,剩下6席分別被FPGA和ASIC平分,值得注意的是Rigetti Computing這家公司,自2012年起開始研發量子芯片,頗受關注,吸納到一共6筆,總計4.72億元的融資。
中國10家芯片公司
美國融資排名前十的芯片公司
綜合來看,中國芯片在公司和融資上大大落后于美國,并且在芯片核心產業和技術上也和美國相去甚遠。而在GPU領域,中國尚無創業公司,只能圍繞FPGA,ASIC等進行邊緣研發,類腦芯片在國內有異軍突起之勢,或許能有所突破,總體形勢十分嚴峻。
誰才是AI大潮幕后的推手?
在中美AI熱潮的幕后推手中,VC的功勞不可小視。一些有遠見卓識的VC已經開始盤點賬面上賺到的利潤,合計什么時候準備殺出城去;而另一些后知后覺的VC,正在籌集糧草,殺進城來。
對AI的投資并非是最近兩年的事,而是自上世紀就開始了。自1999年美國第一筆VC資金投資給AI技術平臺Enkia時,人工智能投資就已經拉開了序幕。
在短短的18年內,各大投資方競相爭搶有潛力的人工智能企業,全球人工智能領域投資吸金2026億元。
對于AI的投資,A輪看團隊、B輪看產品、C輪看數據的套路已經過時,簡單沿用過去PC/移動互聯網的投資邏輯可能導致VC們錯過最佳入局AI的時間窗口。相比于關注公司財務數據,不如更重視其核心商業本質以及戰略意義,并且要真正理解技術的意義,來預測技術是否能大規模提升效率,適不適合規模化發展。
中國投資方(投資次數)TOP20
美國投資方(投資次數)TOP20
其中,Y Combinator投資了34次包括Sift Science,Chute,Qventus和SimpleLegal在內的25家人工智能企業,其中Sift Science 獲得了包括Founder Collective, SV Angel, Y Combinator在內等17家投資方總計3.64億元投資,而Y Combinator參與投資的其余AI公司獲投金額從76萬元到1.14億元不等,輪次也零散分布在天使/種子輪,A輪,B輪和C輪。
在中國,真格基金以37次投資投資高居風投榜首,創新工場和IDG資本分別以28次和22次排列在第二和第三。
在投資熱門領域中,計算機視覺和圖像擁有最多的投資者,共291家;其次是智能機器人和機器學習應用。這些投資機構的投資額在2016年達到歷史最高值,僅2016年一年,就涌現了231.9億元的投資資金。2017年后國內投資更為偏向于中后期項目,對人工智能的投資持更加謹慎態度。
項目少而資金多,大家恨不得把每個選手都投一遍。終于有一天,大家會發現,好項目不夠用了,于是拼命加持舊注。
當前,人工智能產業的核心矛盾有兩個:一是投資需求大而創業項目供給減少;二是市場期望高而產品體驗卻不佳。
如何逾越AI產業鴻溝?
拿到錢并不意味著就可立于不敗之地。按照創新擴散理論,拿到錢,其實是往死亡靠近了一大步。這是科技行業規律使然,AI企業自然也不例外。
科技創新企業在上升發展階段會遇到一定的阻礙和壁壘,稱為創新鴻溝。
技術、產品、資金三個環節若有一環不穩,可能就會墜入深淵不得翻身。
具備怎樣素養的企業可以越過產業鴻溝繼續發展,總結為以下三點:
第一, 技術鴻溝
技術是第一生產力,只有具備一定技術能力并且有后續研發能力的企業才足以支撐后續的升級和發展。初期技術的運用也許能夠支撐企業度過初步發展期,但若沒有資金和研發能力這兩個強有力的支撐后續,企業可能會被后來企業趕超甚至直接被拍死在沙灘上。
第二, 產品鴻溝
產品落地是重中之重,如何將技術落地為產品,突破口和方向決定了企業未來的命運。具有一定技術能力的公司將技術落地為產品,進入市場,促使資金回流,形成良性發展。
第三, 市場鴻溝
市場是產品唯一的檢驗標準,產品是否合格由市場來判定。不符合市場需求,產品不合格的將會被嚴格淘汰,這可能會嚴重影響公司發展。
這三大鴻溝是人工智能企業發展的門檻,只有跨越過這三大鴻溝,才能引來更光明的未來。
人工智能產業雖然前景廣闊,但創業項目增量降低,創新鴻溝已經出現,死亡瘟疫開始蔓延,泡沫依然擴大,下一步創業者和投資者怎么走,著實需要冷靜思考。
事實就是如此殘酷。于是,沒有跨過鴻溝的企業等待的只有死亡。創業的高峰已經短暫結束。
什么類型的新項目會死亡?
根據騰訊研究院&IT桔子聯合發布的《2017年中美人工智能創投現狀與趨勢研究報告》統計數據,人工智能經過創業持續火爆增長的兩年高峰期,在2017年,產業開始進入休整階段。
很多類似的創業公司難以獲取用戶,商業模式不能驗證。最后只能關張了事。
2013-2015兩年間快速發展下積壓的眾多市場矛盾已經出現爆發的前兆。目前,智能無人機、餐廳機器人、虛擬助理、智能硬件等領域和行業已初顯頹勢。據初步估算,中美倒閉企業總數已超過50家。
虛擬助理技術并未完全成熟,消費級市場還沒有被打開,如近期倒閉的公司有:應應-雨恒矩陣、智能萬事屋等。2017年,很多無人機領域的公司資金方面都遇到了一些問題,億航、零度相繼大幅裁人,全球銷量前三的Parrot也宣布裁員三分之一。機器人服務員是噱頭,早期幾家均倒閉。由多位蘋果前資深員工創立的 Pearl Automation(珍珠自動化)自動駕駛公司,曾獲得兩輪總計 5000 萬美元的投資,因為旗下產品銷量慘淡,目前已經停止了運營。
部分創業公司的死亡是在所難免的,用死亡換來的經驗和教訓,尤其值得關注。就目前倒閉企業分析,原因歸納為以下5點:
第一, 技術未成熟,產品不合格;
第二, 難以突破并實現穩定的市場份額增長;
第三, 缺乏與巨頭競爭的能力;
第四, 成本高昂導致售價超過消費者購買能力;
第五, 資金不足無法支撐后續研發。
同質化嚴重的市場上,死亡的瘟疫依然還在蔓延。我們可以預見AI企業在接下來很長一段時間都要接受市場的嚴格考驗,大多數企業會被市場毫不留情的淘汰,只有少數會活下來。
(原文鏈接:https://www.huxiu.com/article/211692.html )
1.TMT觀察網遵循行業規范,任何轉載的稿件都會明確標注作者和來源;
2.TMT觀察網的原創文章,請轉載時務必注明文章作者和"來源:TMT觀察網",不尊重原創的行為TMT觀察網或將追究責任;
3.作者投稿可能會經TMT觀察網編輯修改或補充。